
 Computer Graphics

 Lecture 17

Polygon Clipping

To clip polygons, we need to modify the line-clipping procedures discussed
in the previous section. A polygon boundary processed with a line clipper
may be displayed as a series of unconnected line segments (Fig. 6-17),
depending on the orientation of the polygon to the clipping window. What
we really want to display is a bounded area after clipping, as in Fig. 6-18.
For polygon clipping, we require an algorithm that will generate one or
more closed areas that are then scan converted for the appropriate area
fill. The output of a polygon clipper should be a sequence of vertices that
defines the clipped polygon boundaries.

Sutherland-Hodgeman Polygon Clipping

We can correctly clip a polygon by processing the polygon bound jry as a
whole against each window edge. This could be accomplished by
processing all polygon vertices against each clip rectangle boundary in
turn. Beginning with the initial set of polygon vertices, we could first clip
the polygon against the left rectangle boundary to produce a new
sequence of vertices. The new set of vertices could then k successively
passed to a right boundary clipper, a bottom boundary clipper, and a top

boundary clipper, as in Fig. 6-19. At each step, a new sequence of output
vertices is generated and passed to the next window boundary clipper.

There are four possible cases when processing vertices in sequence around
the perimeter of a polygon. As each pair of adjacent polygon vertices is
passed to a window boundary clipper, we make the following tests: (1) If
the first vertex is outside the window boundary and the second vertex is
inside, both the intersection point of the polygon edge with the window
boundary and the second vertex are added to the output vertex list. (2) If
both input vertices are inside the window boundary, only the second
vertex is added to the output vertex list. (3) If the first vertex is inside the
window boundary and the second vertex is outside, only the edge
intersection with the window boundary is added to the output vertex list.
(4) If both input vertices are outside the window boundary, nothing is
added to the output list. These four cases are illustrated in Fig. 6-20 for
successive pairs of polygon vertices. Once all vertices have been processed
for one clip window boundary, the output list of vertices is clipped against
the next window boundary.

Convex polygons are correctly clipped by the Sutherland-Hodgeman
algorithm, but concave polygons may be displayed with extraneous lines,
as demonstrated in Fig. 6-24. This occurs when the clipped polygon should
have two or more separate sections. But since there is only one output
vertex list, the last vertex in the list is always joined to the first vertex.
There are several things we could do to correctly display concave polygons.
For one, we could split the concave polygon into two or more convex
polygons and process each convex polygon separately. Another possibility
is to modify the Sutherland-Hodgeman approach to check the final vertex
list for multiple vertex points along any clip window boundary and correctly
join pairs of vertices.

Curve Clipping
Areas with curved boundaries can be clipped with methods similar to those
discussed in the previous .sections. Curve-clipping procedures will involve
nonlinear equations, however, and this requires more processing than for
objects with linear boundaries.
The bounding rectangle for a circle or other curved object can be used first
to test for overlap with a rectangular clip window. If the bounding
rectangle for the object is completely inside the window, we save the
object. If the rectangle is determined to be completely outside the window,

we discard the object. In either case, there is no further computation
necessary. But if the bounding rectangle test fails, we can look for other
computation-saving approaches. For a circle, we can use the coordinate
extents of individual quadrants and then octants for preliminary testing
before calculating curve-window intersections. For an ellipse, we can test
the coordinate extents of individual quadrants. Figure 6-27 illustrates circle
clipping against a rectangular window.
Similar procedures can be applied when clipping a curved object against a
general polygon clip region. On the first pass, we can clip the bounding
rectangle of the object against the bounding rectangle of the clip region. If
the two regions overlap, we will need to solve the simultaneous line-curve
equations to obtain the clipping intersection points.

Text Clipping
There are several techniques that can be used to provide text clipping in a
graphics package. The clipping technique used will depend on the methods
used to generate characters and the requirements of a particular
application.
The simplest method for processing character strings relative to a window
boundary is to use the all-or-none string-clipping strategy shown in Fig. 6-
28. If all of the string is inside a clip window, we keep it. Otherwise, the
string is discarded. This procedure is implemented by considering a
bounding rectangle around the text pattern. The boundary positions of the
rectangle are then compared to the window boundaries, and the string is

rejected if there is any overlap. This method produces the fastest text
clipping.
An alternative to rejecting an entire character string that overlaps a
window boundary is to use the all-or-none character-clipping strategy.
Here we discard only those characters that are not completely inside the
window (Fig. 6-29). In this case, the boundary limits of individual characters
are compared to the window. Any character that either overlaps or is
outside a window boundary is clipped.
A final method for handling text clipping is to clip the components of
individual characters. We now treat characters in much the same way that
we treated lines. If an individual character overlaps a clip window
boundary, we clip off the parts of the character that are outside the
window (Fig. 6-30). Outline character fonts formed with line segments can
be processed in this way using a line-clipping algorithm. Characters defined
with bit maps would be clipped by comparing the relative position of the
individual pixels in the character grid patterns to the clipping boundaries.

